Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome-wide identification and characterization of miRNAs from Pinus densata.

Identifieur interne : 002864 ( Main/Exploration ); précédent : 002863; suivant : 002865

Transcriptome-wide identification and characterization of miRNAs from Pinus densata.

Auteurs : Li-Chuan Wan [République populaire de Chine] ; Haiyan Zhang ; Shanfa Lu ; Liang Zhang ; Zongbo Qiu ; Yuanyuan Zhao ; Qing-Yin Zeng ; Jinxing Lin

Source :

RBID : pubmed:22480283

Descripteurs français

English descriptors

Abstract

BACKGROUND

MicroRNAs (miRNAs) play key roles in diverse developmental processes, nutrient homeostasis and responses to biotic and abiotic stresses. The biogenesis and regulatory functions of miRNAs have been intensively studied in model angiosperms, such as Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. However, global identification of Pinus densata miRNAs has not been reported in previous research.

RESULTS

Here, we report the identification of 34 conserved miRNAs belonging to 25 miRNA families from a P. densata mRNA transcriptome database using local BLAST and MIREAP programs. The primary and/or precursor sequences of 29 miRNAs were further confirmed by RT-PCR amplification and subsequent sequencing. The average value of the minimal folding free energy indexes of the 34 miRNA precursors was 0.92. Nineteen (58%) mature miRNAs began with a 5' terminal uridine residue. Analysis of miRNA precursors showed that 19 mature miRNAs were novel members of 14 conserved miRNA families, of which 17 miRNAs were further validated by subcloning and sequencing. Using real-time quantitative RT-PCR, we found that the expression levels of 7 miRNAs were more than 2-fold higher in needles than in stems. In addition, 72 P. densata mRNAs were predicted to be targets of 25 miRNA families. Four target genes, including a nodal modulator 1-like protein gene, two GRAS family transcription factor protein genes and one histone deacetylase gene, were experimentally verified to be the targets of 3 P. densata miRNAs, pde-miR162a, pde-miR171a and pde-miR482a, respectively.

CONCLUSIONS

This study led to the discovery of 34 conserved miRNAs comprising 25 miRNA families from Pinus densata. These results lay a solid foundation for further studying the regulative roles of miRNAs in the development, growth and responses to environmental stresses in P. densata.


DOI: 10.1186/1471-2164-13-132
PubMed: 22480283
PubMed Central: PMC3347991


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome-wide identification and characterization of miRNAs from Pinus densata.</title>
<author>
<name sortKey="Wan, Li Chuan" sort="Wan, Li Chuan" uniqKey="Wan L" first="Li-Chuan" last="Wan">Li-Chuan Wan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Haiyan" sort="Zhang, Haiyan" uniqKey="Zhang H" first="Haiyan" last="Zhang">Haiyan Zhang</name>
</author>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
</author>
<author>
<name sortKey="Zhang, Liang" sort="Zhang, Liang" uniqKey="Zhang L" first="Liang" last="Zhang">Liang Zhang</name>
</author>
<author>
<name sortKey="Qiu, Zongbo" sort="Qiu, Zongbo" uniqKey="Qiu Z" first="Zongbo" last="Qiu">Zongbo Qiu</name>
</author>
<author>
<name sortKey="Zhao, Yuanyuan" sort="Zhao, Yuanyuan" uniqKey="Zhao Y" first="Yuanyuan" last="Zhao">Yuanyuan Zhao</name>
</author>
<author>
<name sortKey="Zeng, Qing Yin" sort="Zeng, Qing Yin" uniqKey="Zeng Q" first="Qing-Yin" last="Zeng">Qing-Yin Zeng</name>
</author>
<author>
<name sortKey="Lin, Jinxing" sort="Lin, Jinxing" uniqKey="Lin J" first="Jinxing" last="Lin">Jinxing Lin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22480283</idno>
<idno type="pmid">22480283</idno>
<idno type="doi">10.1186/1471-2164-13-132</idno>
<idno type="pmc">PMC3347991</idno>
<idno type="wicri:Area/Main/Corpus">002A86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A86</idno>
<idno type="wicri:Area/Main/Curation">002A86</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A86</idno>
<idno type="wicri:Area/Main/Exploration">002A86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome-wide identification and characterization of miRNAs from Pinus densata.</title>
<author>
<name sortKey="Wan, Li Chuan" sort="Wan, Li Chuan" uniqKey="Wan L" first="Li-Chuan" last="Wan">Li-Chuan Wan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Haiyan" sort="Zhang, Haiyan" uniqKey="Zhang H" first="Haiyan" last="Zhang">Haiyan Zhang</name>
</author>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
</author>
<author>
<name sortKey="Zhang, Liang" sort="Zhang, Liang" uniqKey="Zhang L" first="Liang" last="Zhang">Liang Zhang</name>
</author>
<author>
<name sortKey="Qiu, Zongbo" sort="Qiu, Zongbo" uniqKey="Qiu Z" first="Zongbo" last="Qiu">Zongbo Qiu</name>
</author>
<author>
<name sortKey="Zhao, Yuanyuan" sort="Zhao, Yuanyuan" uniqKey="Zhao Y" first="Yuanyuan" last="Zhao">Yuanyuan Zhao</name>
</author>
<author>
<name sortKey="Zeng, Qing Yin" sort="Zeng, Qing Yin" uniqKey="Zeng Q" first="Qing-Yin" last="Zeng">Qing-Yin Zeng</name>
</author>
<author>
<name sortKey="Lin, Jinxing" sort="Lin, Jinxing" uniqKey="Lin J" first="Jinxing" last="Lin">Jinxing Lin</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>MicroRNAs (chemistry)</term>
<term>MicroRNAs (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Pinus (genetics)</term>
<term>RNA Cleavage (MeSH)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Clivage de l'ARN (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Pinus (génétique)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>microARN (composition chimique)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>MicroRNAs</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pinus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Pinus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>RNA Cleavage</term>
<term>Reproducibility of Results</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Clivage de l'ARN</term>
<term>Données de séquences moléculaires</term>
<term>Reproductibilité des résultats</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence nucléotidique</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>MicroRNAs (miRNAs) play key roles in diverse developmental processes, nutrient homeostasis and responses to biotic and abiotic stresses. The biogenesis and regulatory functions of miRNAs have been intensively studied in model angiosperms, such as Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. However, global identification of Pinus densata miRNAs has not been reported in previous research.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Here, we report the identification of 34 conserved miRNAs belonging to 25 miRNA families from a P. densata mRNA transcriptome database using local BLAST and MIREAP programs. The primary and/or precursor sequences of 29 miRNAs were further confirmed by RT-PCR amplification and subsequent sequencing. The average value of the minimal folding free energy indexes of the 34 miRNA precursors was 0.92. Nineteen (58%) mature miRNAs began with a 5' terminal uridine residue. Analysis of miRNA precursors showed that 19 mature miRNAs were novel members of 14 conserved miRNA families, of which 17 miRNAs were further validated by subcloning and sequencing. Using real-time quantitative RT-PCR, we found that the expression levels of 7 miRNAs were more than 2-fold higher in needles than in stems. In addition, 72 P. densata mRNAs were predicted to be targets of 25 miRNA families. Four target genes, including a nodal modulator 1-like protein gene, two GRAS family transcription factor protein genes and one histone deacetylase gene, were experimentally verified to be the targets of 3 P. densata miRNAs, pde-miR162a, pde-miR171a and pde-miR482a, respectively.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study led to the discovery of 34 conserved miRNAs comprising 25 miRNA families from Pinus densata. These results lay a solid foundation for further studying the regulative roles of miRNAs in the development, growth and responses to environmental stresses in P. densata.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22480283</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome-wide identification and characterization of miRNAs from Pinus densata.</ArticleTitle>
<Pagination>
<MedlinePgn>132</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-13-132</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">MicroRNAs (miRNAs) play key roles in diverse developmental processes, nutrient homeostasis and responses to biotic and abiotic stresses. The biogenesis and regulatory functions of miRNAs have been intensively studied in model angiosperms, such as Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. However, global identification of Pinus densata miRNAs has not been reported in previous research.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here, we report the identification of 34 conserved miRNAs belonging to 25 miRNA families from a P. densata mRNA transcriptome database using local BLAST and MIREAP programs. The primary and/or precursor sequences of 29 miRNAs were further confirmed by RT-PCR amplification and subsequent sequencing. The average value of the minimal folding free energy indexes of the 34 miRNA precursors was 0.92. Nineteen (58%) mature miRNAs began with a 5' terminal uridine residue. Analysis of miRNA precursors showed that 19 mature miRNAs were novel members of 14 conserved miRNA families, of which 17 miRNAs were further validated by subcloning and sequencing. Using real-time quantitative RT-PCR, we found that the expression levels of 7 miRNAs were more than 2-fold higher in needles than in stems. In addition, 72 P. densata mRNAs were predicted to be targets of 25 miRNA families. Four target genes, including a nodal modulator 1-like protein gene, two GRAS family transcription factor protein genes and one histone deacetylase gene, were experimentally verified to be the targets of 3 P. densata miRNAs, pde-miR162a, pde-miR171a and pde-miR482a, respectively.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study led to the discovery of 34 conserved miRNAs comprising 25 miRNA families from Pinus densata. These results lay a solid foundation for further studying the regulative roles of miRNAs in the development, growth and responses to environmental stresses in P. densata.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Li-Chuan</ForeName>
<Initials>LC</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Haiyan</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Shanfa</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Liang</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Zongbo</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Yuanyuan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Qing-Yin</ForeName>
<Initials>QY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Jinxing</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>04</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059367" MajorTopicYN="N">RNA Cleavage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>09</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22480283</ArticleId>
<ArticleId IdType="pii">1471-2164-13-132</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-13-132</ArticleId>
<ArticleId IdType="pmc">PMC3347991</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1779(11):725-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18342023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Oct;18(10):1602-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19068109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):642-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 20;136(4):669-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 May 1;436(1-2):37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19393185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1966-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):750-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;184(1):85-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19555436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19788742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2780-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19767456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009;10:421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20021695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(5):e10698</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20502668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jun 1;62(6):960-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Sep;187(4):1154-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2010;7:281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20973960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 Sep;20(18):3796-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21689188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29669</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22235323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22272770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Apr 29;13(9):784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12725739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 26;303(5666):2022-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12753-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Jan;15(1):78-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 May;6(5):376-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15852042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W701-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9412-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2005 Oct;39(4):519-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16235564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Dec 29;123(7):1279-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2006 Jan;63(2):246-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16395542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(2):243-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):436-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:19-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jul;18(7):1559-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16798886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Dec 15;20(24):3407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(2):e219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17299599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Apr 1;21(7):750-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17403777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(6):1077-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(6):R96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17543110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18166134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Apr;18(4):571-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18323537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18312648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18402695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jun;54(5):876-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 30;320(5880):1185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 6;283(23):15932-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(1):67-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18433430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Sep;18(9):1456-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18687877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jan;5(1):e1000320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119413</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Lin, Jinxing" sort="Lin, Jinxing" uniqKey="Lin J" first="Jinxing" last="Lin">Jinxing Lin</name>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<name sortKey="Qiu, Zongbo" sort="Qiu, Zongbo" uniqKey="Qiu Z" first="Zongbo" last="Qiu">Zongbo Qiu</name>
<name sortKey="Zeng, Qing Yin" sort="Zeng, Qing Yin" uniqKey="Zeng Q" first="Qing-Yin" last="Zeng">Qing-Yin Zeng</name>
<name sortKey="Zhang, Haiyan" sort="Zhang, Haiyan" uniqKey="Zhang H" first="Haiyan" last="Zhang">Haiyan Zhang</name>
<name sortKey="Zhang, Liang" sort="Zhang, Liang" uniqKey="Zhang L" first="Liang" last="Zhang">Liang Zhang</name>
<name sortKey="Zhao, Yuanyuan" sort="Zhao, Yuanyuan" uniqKey="Zhao Y" first="Yuanyuan" last="Zhao">Yuanyuan Zhao</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wan, Li Chuan" sort="Wan, Li Chuan" uniqKey="Wan L" first="Li-Chuan" last="Wan">Li-Chuan Wan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002864 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002864 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22480283
   |texte=   Transcriptome-wide identification and characterization of miRNAs from Pinus densata.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22480283" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020